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SUMMARY

The fluid-dynamic characteristics of flat plates, 5° and i0 ° wedges,
and 5° and i0 ° cones have been investigated at Mach numbers from 16.3

to 23.9 in helium flow. The flat-plate results are for a leading-edge

Reynolds number range of 584 to 19,500 and show that the induced pressure

distribution is essentially linear with the hypersonic viscous interac-

tion parameter _ within the scope of this investigation. It is also

shown that the rate at which the induced pressure varies with _ is a

linear function of the leading-edge Reynolds number.

The wedge and cone results show that as the flow-deflection angle

increases, the induced-pressure effects decrease and the measured pres-

sures approach those predicted by inviscid shock theory.

INTRODUCTION

The induced effects of boundary-layer displacement thickness on

the pressure distribution of a flat plate at hypersonic speeds were first

pointed out in reference i. Since that time numerous theoretical and

experimental investigations have been made in an attempt to define and

predict the induced pressure effects on simple configurations at hyper-

sonic speeds.

The theoretical investigations presented in the literature have

proceeded in two distinct phases. In the first phase pure viscous

effects on flat plates were investigated by assuming an infinitesimally

thin leading edge. The influence of the rate of growth of the hypersonic

boundary layer on the pressure distribution was then determined by vari-

ous methods, as reported in references 2 to 5_ among others. These ref-

erences included treatment of both the "weak" and "strong" interaction

regions. The weak interaction region is far enough downstream of the

leading edge that interaction between the flow field and boundary layer
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is negligible and the surface streamwise pressure gradient is small;
the strong interaction region is close to the leading edge where shock-
wave--boundary-layer interactions are strong, and the boundary layer is
in a high negative streamwise pressure gradient. These investigations
have shownthat the controlling parameter for the pressure distribution
in both the weak and strong viscous interaction regions is the viscous
hypersonic interaction parameter of reference 3.

In the second phase of the theoreticLll work pure inviseid effects
on flat plates due to the finite leading-edge thickness were investigated.
A theoretical model of the flow is reported in reference 6, wherein the
inviseid flow about a flat plate with blu_it leading edge is represented
by flow about a flat plate with sonic-wedge leading edge, and the surface
pressure variation is then determined by the method of characteristics.
The effect of the large entropy gradient behind the curved shock is
included by retaining the rotational term in the characteristics equation.

The inviscid effects caused by a bluL_it leading edge have also been
treated in references 7 and 8 by use of tile blast-wave theory based on
the work of reference 9. The characteristic solution of reference 6 is
shownto be correlated by the controlling parameter predicted by blast-
wave theory (ref. i0).

Concurrently with the aforementioned theoretical work, the experi-
mental work contained in references 2, 6_ and ii to 21 has been published.
Within the range of variables covered_ these investigations have gener-
ally tended to confirm the theoretical pr,_dictions for both the pure
viscous and pure inviscid effects.

In the practical case, viscous and imviscid effects will exist
simultaneously_ however. Reference 16 presents a semiempirical, itera-
tive procedure which attempts to account for the combined viscous and
inviscid effects. However_the results are not suitable for making
rapid engineering estimates. References li and 21 showby comparison
with experiment that a simple linear addi'.ion of viscous and inviscid
theories gives a good approximation to e_)eriment within the scope of
the available data.

The present investigation is an exte_sion and amplification of the
experimental work reported in reference 2(). The Math numberwas extended
from 16.3 to 23.9 and the flat plates and cones were tested for a wide
range of leading-edge or nose Reynolds n_ers. The wedgeswere tested
at one leading-edge Reynolds numberonly. The results are comparedwith
theory.

At the Machnumbersof this test, which are in the satellite and
space-vehicle reentry range, the viscous and inviscid effects are greatly



magnified so that a closer scrutiny of the various theoretical predic-
tions as comparedwith experimental reality is possible.

SYMBOLS

A

B =

C

CD_ n

d

d*

M

Npr

P

Pc

Pt

mp

R

R d

Rt

Rx

constant (see eq. (7))

_w
linear viscosity coefficient in relation

from C (i + F - i M2) _-I= for Npr = i
2

nose drag coefficient

nose diameter_ in.

throat diameter_ in.

Mach number

Prandtl number

static pressure, lb/sq in.

inviscid pressure on cone surface at nose, ib/sq in.

total pressure_ ib/sq in.

induced static pressure (measured pressure minus reference

pressure)

Reynolds number

Reynolds number based on nose diameter

Reynolds number based on leading-edge thickness

Reynolds number based on distance from leading edge

- C T_; determined
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T

Tt

Tw

t

w

x

Xth

7

e

_a

X

radial distance from center line of tunnel

temperature, oR

total temperature, OR

wall temperature_ OR

leading-edge thickness_ in.

width of plate, in.

distance from leading edge of model, in.

distance from throat of nozzle, in.

ratio of specific heats

semicone or semiwedge angle, deg

dynamic viscosity, ib/in-sec

hypersonic viscous interaction p_rameter,

viscosity power-law index in relation

Subscripts:

i

2

i

m

T

v

w

free-stream conditions at leadin_ edge or nose

conditions behind normal shock

inviscid

local inviscid condition

measured

theoretical

viscous

inviscid conditions on wedge surface at leading edge
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APPARATUS

All tests were performed in a 2-inch-diameter helium blowdown tun-

nel located in the Langley 9-Inch Tunnel Section. A diagram of the tun-

nel and its operating components is shown in figure 1. The tunnel has

two interchangeable throats of 0.052- and O.060-inch diameter. The

conical nozzle expands with a semidivergence angle of 5° from the throat

to the constant 2-inch-diameter section. Helium was supplied from a

55-cubic-foot reservoir to the tunnel stagnation chamber at pressures

up to 3,000 ib/sq in. The tunnel could be operated for i0 minutes at a

stagnation pressure of 2,000 lb/sq in. A two-stage steam ejector was

used to create a low back pressure; the ratio of stagnation pressure to

back pressure was practically constant over a wide range of stagnation

pressure and was about 1,O00 and 1,500 for the 0.060- and O.052-inch-

diameter throats, respectively. The stagnation temperature was constant

for any given test and always in the range of 79° F to 94 ° F.

Visual observations of the models were made in a second 2-inch tunnel

which was identical to the first except that it was equipped with schlie-

ren windows. The tunnel with the sehlieren windows used the same two

interchangeable throats.

The test models were supported by means of a long sting whose longi-

tudinal position was controlled by a motorized gear and screw system.

The sting was centered in the tunnel by two spiders and the clamp on the

longitudinal control mechanism. The orifice locations and dimensions

on the test models are shown in figure 2. The orifices were all
0.020 inch in diameter.

Tunnel Calibration

The calibration of the axisymmetric tunnel with each of the avail-

able throats is presented in figure 5.

In the boundary layer the pitot pressure is less than free-stream

pressure, and behind a shock it is greater than free-stream pressure.

If the pitot pressures obtained in the boundary layer and behind a shock

are used to compute a Mach number from the total-pressure ratio across

a normal shock, assuming isentropic flow from the stagnation chamber up

to the normal shock, the indicated Mach number will be wrong. The com-

putation will indicate Mach numbers which are higher than free-stream

values in the boundary layer and lower than free-stream values behind a

shock. These may be seen in figure 3. The beginning of incorrect Mach

number indications is the limit of the usable flow. Figure 4 was pre-

pared from figure 3(a) and shows the approximate usable region in the

tunnel with d* = 0.052 inch and Pt,l = 2,015 Ib/sq in. abs.
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The O.052-inch-diameter throat which was used for most of these
tests was more thoroughly calibrated than the other throat. The lateral
Machnumber distribution is better with the O.060-inch throat than with
the O.052-inch throat; however, the Machnumber capability is not as
high. The effect of the lateral Machnumberdistribution was determined
by testing a flat plate with t = 0.009 inch and w = 0.8 inch at the
sameMachnumberand total pressure with bo_h throats. The results are
shownin figure 5. The agreement of the data in the two different
throats indicates that, so long as the center-line Machnumbers and
stagnation pressures are the same, a small lateral Machnumbervariation
has a negligible effect on the model center-line pressure.

The difference in lateral Machnumbergradients with the two throats
is attributed to the difference in the growzh of the tunnel-wall boundary
layers. Whenthe smaller of the two throats is used, the unit Reynolds
numberwill be less at each tunnel station _or constant stagnation pres-
sure. Thus, the boundary layer at any station will be thicker when
d* = 0.052 inch than when d* = 0.060 inch. At the nozzle exit the
thicker boundary layer presents a greater region of subsonic flow through
which downstreamback-pressure effects maybe propagated. The forward
feeding of downstreampressure disturbances aggravates the situation by
increasing the boundary-layer thickness stiLl more, in somecases causing
separation and breakdown of flow. The boundary layer also affects the
location of the shock which_ in the absence of viscosity, would originate
on the wall of the tunnel at the cone-cylinder juncture. This interac-
tion of the shock and boundary layer also affects the condition of the
boundary layer.

The effect of varying the unit Reynolds numberof the flow is illus-
trated in figure 6, which showsthe variation of the Machnumber at
r = 0.3 inch at a fixed station in the tunnel (with d* = 0.060 inch).
The Reynolds numbervariation was obtained _y varying the stagnation
pressure. As Pt,l decreases, the Machnumberdecreases, indicating
that the wall boundary layer is increasing In thickness.

Instrumentation

Supply and pitot pressures were measured on Bourdon gages with an

accuracy of ±5 and ±0.i ib/sq in., respecticely. Static pressures were

read on U-tube butyl phthalate manometers. The reference pressure on

the U-tubes was maintained at less than 20 microns of mercury. Twenty

microns of mercury is equivalent to approxinately O.Ol-inch of butyl

phthalate, which was considered to be withi_ the reading accuracy of the

U-tubes. The estimated accuracy of the measured static pressures is

±0.0007 ib/sq in.



The estimated accuracy in Machnumber, based on the aforementioned
combined errors_ is given in the following table:

Maximumpercentage error in M at -Pt,l_
ib/sq in. M = 17 M = 19 M = 21 M = 23

1,015

1,515

2,015

+0.9

+.6

+.5

+1.2

+.8

+.5

+i.5

+i.0

+.8

TESTS

For all tests, the models were alined along the tunnel center line

at zero angle of attack and zero angle of yaw. The free-stream Mach num-

ber was varied by changing the longitudinal position of the model in the

tunnel in accordance with the calibration curves of figure 3. The varia-

tion of the Reynolds number based on leading-edge thickness was attained

by varying the stagnation pressure from 1,015 to 2,015 ib/sq in. abs and

by varying the leading-edge thickness of the various models. The leading-

edge thickness for the flat plates and wedges and the nose diameter for

the cones are given in figure 2. Most of the flat plates were 0.8 inch

wide, but some plates 0.6 inch wide were tested to determine the effect

of plate width. The surface static pressures were photographically

recorded at the steady-state condition, which was usually obtained about
90 to 120 seconds after the tunnel was started.

RESULTS AND DISCUSSION

Schlieren Observations

Schlieren photographs are presented in figures 7 to 9 for some of

the configurations tested. All pictures are for a stagnation pressure

of 2,015 ib/sq in. abs. For the flat plate, only the 0.001- and 0.020-

inch-thick leading edge is shown, and for the wedge only the O.002-inch-

thick leading edge was tested. The cone photographs also show only the

smallest and largest nose diameters. No pressure measurements were made

on the cones with a nose diameter of 0.002 inch.



The effect of leading-edge thickness on the condition of the bound-
ary layer on the flat plate, as well as the effect on the shock shape,
is very marked. (See fig. 7.) For the sharp flat plate (t = 0.001 inch)
two features are immediately noticeable: (I) the presence of the strong
shock caused by the rapid growth of the boundary layer at the leading
edge which, in the absenceof viscosity, would be a Machwave, and (2)
the white streak between the plate surface and the shock, which denotes
the edge of the thermal boundary layer. Th_ shock inclination indicates
that T2/TI _ 5 in the inviscid flow region, while recovery temperature
exists at the plate surface. Thus the ratio of wall temperature to the
temperature of the inviscid flow external to the boundary layer is on the
order of 20 to 30.

On the blunt flat plate the shock is obviously detached and much
steeper than the shock for the sharp plate. Also, the region indicating
high thermal shear does not occur on the sc_lieren photographs of the
blunt flat plate. In fact, there is no indication of the presence of a
thick boundary layer. The temperature rise across the strong shock has
increased the temperature of the inviscid flow over the plate to a level
muchcloser to the recovery temperature, and the boundary layer is thus
similar to that for low supersonic conditions.

For the sharp-leading-edge wedges shOWZLin figure 8 the edge of the
thermal gradient, which is essentially the _dge of the boundary layer,
is closer to the surface than in the case of the flat plates alined with
the stream. This thinning of the boundary Layer is a consequenceof the
change in local conditions (mainly local Math number and local Reynolds
number). With increasing angle of attack the predictions of inviscid
shock theory will becomeincreasingly more accurate.

The sharp-nosed cones show the samecharacteristics as the wedges;
the steeper the cone angle, the closer the _dge of the thermal boundary
layer lies to the surface. (See fig. 9.) J_iso, the flow field behind
the detached shock from the blunt-nosed con_s showsno white streak, as
was the case with the blunt flat plates.

Reference Pressur(_

Although there was a longitudinal Machnumbergradient in the tun-
nel, no attempt was madeto correct the dat_ for any effect the gradient
mayhave had. For the flat plates, the ref,_rence pressure was the
leading-edge free-stream static pressure; for the wedgesand cones, the
reference pressure was calculated from the :Lnviscid shock equations and

the free-stream static pressure at the leading edge or nose.
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The reason no attempt was made to correct the data is that, at high

Mach numbers, shock-reflected disturbances play a minor role in deter-

mining body surface pressures compared with the effect of disturbances

generated by the body (including boundary-layer displacement thickness)

except near shock detachment. (See refs. 22 and 23.) That is, the pres-

sure distribution on a body is determined primarily by the initial shock

at the nose and by the Prandtl-Meyer expansions over the body itself.

There is no reason to believe that a Mach number gradient external to

the shock will make the shock-reflected disturbances become important

except, perhaps, under some rather extreme conditions.

In reference 20 the flat-plate data are corrected for the Mach num-

ber gradient by taking as the reference pressure the free-stream static

pressure that would have existed at each orifice location when the tunnel

was empty. The value of X is also determined at each orifice for

tunnel-empty conditions.

The method used to handle the flat-plate data in the present report

and the method used in reference 20 are compared in figure i0, which is

a plot of _P/Pl against _! (method of present report) and Z_p/p_

against _Z (method of ref. 20) for a high and a low value of R t at

MI = 17 and M I = 23. It can be seen that the two methods give essen-

tially the same results. Thus the data of the present paper and the

data of reference 20 are directly comparable.

Flat-Plate Results

The flat-plate pressure distributions are presented in figures ii

and 12 as Ap/p I against _i for various values of Rt and M I. The

main body of the data is presented in figure Ii and is for w = 0.8 inch.

The data shown in figure 12 are for w = 0.6 inch and include a repeat

of some of the data shown in figure ii in order to show that width effect

was apparently unimportant in the range of the present tests.

Consistently high readings were obtained from the second and last

orifices of the plate whose leading edge was blunted to obtain thick-

nesses of t = 0.001, 0.002, 0.0035, and 0.008 inch. These points are

not presented. The other leading-edge thicknesses were obtained on

different plates.

The variation of Ap/p I with XI in figures ii and 12 is seen to

be essentially linear for all tests. The slope and location of the curves

vary with both Mach number and R t. The curves on figures ii and 12

should not be extrapolated beyond _i _ MI3_ for R t _ 6,000, as will

be shown later.
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Comparisonof Data With Various Theoretical Predictions

For the thinnest leading edge, where the inviscid effects are mini-
mized, the agreement of the data with Lees' zeroth-order strong-
interaction theory (ref. 4) is fairly good. (See fig. ii.) As Rt
increases, the deviation of the data above Lees' curve increases until,
at M1 : 23, _i = 23, and Rt = 11,680, the value of Lkp/pI reaches 55

as compared with 20 for the viscous prediction. For this case the inter-

action is predominantly due to inviscid effects. The difference in the

character of the flow may be seen in the schlieren photographs of

figure 7.

Since all the plates tested had finite leading-edge thicknesses,

both viscous and inviscid effects are present in all the data. Although

there is as yet no complete theoretical treatment of the combined vis-

cous and inviscid effects, including possible interaction effects, refer-

ence 16 presents a semiempirical iterative procedure for determining the

combined viscous and inviscid effects. Hcwever, the method does not

appear suitable for making rapid engineering estimates. References 6

and 21 indicate that a good prediction of the pressure distribution on

a real flat plate (where both viscous and inviscid effects exist simul-

tan(_ously) can be obtained by a linear addition of the viscous and

imviscid theoretical pressures. In the comparison to he made with the

present data, the viscous solution is taken to be the strong interaction

sol_tion of reference 4:

:o
v

(1)

and the inviscid solution is taken to be the blast-wave solution of

reference 7:

:o.169 -M 'N

At high values of

nose normal to the free stream is given ir reference 4 as

(2)

MI, the value of CD, N for a flat, two-dimensional

+ 3 (3)
CD'N - 7 + i

where relieving effects at the edge of the nose are neglected.
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Thus, for helium

(4)

For the flat plate, equation (4) can be rewritten as a function of _i:

MI2
(5)

This equation is plotted in figure 13 for various values of M I and Rt.

A linear addition of equations (i) and (5) gives

ap = .246 --- + 0.9 _I - i (6)

i+v MI 2

Equation (6) is seen to account for all the variables which the

experimental data of figures Ii and 12 show to be important_ including

Rt, although the predicted nonlinearity of the pressure ratio with XI

is not found in the data. However, since the nonlinearity of _P/Pl

with XI shown in equation (6) is fairly weak, equation (6) should still

give a good approximation.

Figure 14 has been prepared in order to determine the range of

applicability of (_p/pl)v , (L_p/pl)i _ and (L_p/pl)i+v (from eqs. (i)_

(5), and (6)) with respect to the present data. The figure indicates

that equation (i) is most satisfactory in the low R t range, as would

be expected, and gives good results for 0 < Rt _ 2,000. Equation (6)

is superior to the other two for 2,000 _ Rt _ 4,000_ while for

4,000 < R t _ 7,000 equations (5) and (6) yield roughly the same degree

of approximation. Equation 5 is best in the range 7,000 _ Rt _ 20_000;

that is, when R t is greater than 7,000, the experimental results are

predicted with good accuracy by a purely inviscid theory. Note that

equation (6) always gives conservative results, and is thus useful for

making first approximations regardless of the Rt range.
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Empirical Analysis of Fl_t-Plate Data

The experimental data show Ap/pI to be linear in [I; that is,

_P - A + B_I (7)
Pl

It is therefore of interest to examine the nature of B, the coefficient
of _i" To gain someinsight into the controlling parameters, the slopes
of the faired curves of figures II and 12 were measuredand are plotted

in figure 15 as B against Rt, where B = _d I_--_. Although there is
dXI

considerable scatter, the plotted points can be approximately represented
by two distinct straight lines:

Rt
B _ O.6 + _ (0 < Rt < 6,OOO) (8)

B_I.6+
Rt

9,300
(6,000 < R t < 20,000) (9)

Thus, the data indicate that the coefficient of _i is roughly linear

in Rt and independent of M1, at least within the scope of this inves-

tigation. Empirically, then, the flat-p]ate pressure distributions are

found to be approximately represented by

I Rt O)_PPl- A + I0.6 + g60 _] (0 < Rt < 6,000) (i0)

and

Rt \ap_A+ 1.6+--_|_ljPl 9,
(6,000 < R t < 20,000) (ll)

It should be noted that the limit of applicability of equation (ii) is

MI3_
_l __ because the pressure-distribution pattern shown in figures ll

2 \/Rt

and 12 (and 16) breaks down when x/t i_ less than about 3 or 4 as a

result of the overexpansion and recompression immediately behind the

shoulder of the blunt leading edge. (Se_ ref. 17.) Thus, if x/t must

be equal to or greater than 4, _i _ MI3_C
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Equation (i0) shows that as R t approaches zero the empirically

determined coefficient of _i is roughly 0.6 for these data, rather

than the theoretically determined constant of 0.92 (ref. 4).

No attempt was made to correlate the parameter A. It appeared to

be subject to random scatter. Its contribution to 24p/pI will gener-

ally be small.

A comparison of equations (i0) and (ii) with equation (6) shows

that although equation (6) predicts a variation of f_p/p I with E 1

and Rt, the orders of magnitude of the variations are not quite correct.

Also, the predicted variation of £_P/Pl with M1 is not realizedj at

least within the scatter of the data.

The reason for the abrupt change in slope of the data at R t _ 6,000

is not known, but it certainly indicates that a rapid change in the char-

acter of the flow is taking place. The abrupt change occurs close to

the point (Rt _ 7,000) at which the inviscid blast-wave theory becomes

as accurate as or better than the sum of the viscous and inviscid predic-

tions (fig. 14). In reference 15 it is stated that when R t is greater

than 4,000, the flow is independent of Reynolds number. (This conclusion

is not strictly correct and was apparently reached because the data were

plotted to an insensitive log-log scale.) This value of R t is on the

same order as that at which the present data indicate a rapid change in

flow characteristic from viscid-inviscid to primarily inviscid.

Reference 18 presents pressure distributions on flat plates at Mach

numbers of 11.4, 12.7, and 13.8 in helium. The R t range was from 93

to 17,300, which is comparable to that of the present investigation.

The data, which are presented as 2_p/pz against x/t in reference 18,

have been replotted as 2_p/pI against _i and are shown in figure 16.

The data were taken from the log-log plots of reference 18 with the aid

of a Gerber variable scale and a set of log tables. Values of 2_p/pI

were obtained from 2_o/p z by use of the following equation:

2_ppl-P_(_+Pl i) - i (12)
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The ratio P_/Pl was obtained from the Maci_numberdistribution given
in figure 3 of reference 15, together with the tables of reference 24.
As in the present investigation, the variation of 2_0/pI with _i is
seen to be essentially linear.

Values of B have been obtained from Sigure 16 and are shown in
figure 17. Superimposedon this figure are equations (8) and (9),
representing the results of the present inw_stigation.

As in the present data, there is considerable scatter, particularly
at the lower values of Rt. Of interest are the points above Rt = 6,000.
They form a straight line which is approximately parallel to equation (9)
but displaced above it, suggesting the presence of a Machnumber effect
of the type predicted by blast-wave theory, although not necessarily of
the sameorder of magnitude. Further investigation is necessary to
resolve this point. It is of interest to note that the type of varia-
tion found from reference 18 and the presenb investigation could be

Rt
roughly accounted for at Rt > 6,000 by setting B _ 7.6+ --.

9,3o0

Wedges

Although both 5° and i0 ° wedges were iavestigated, only the results

for the 5° wedges are thought to be reliable. The small test core of

the tunnel (see fig. 4) limited the model width to 0.8 inch for the

5° wedge and to 0.6 inch for the i0 ° wedge. This width was not great

enough to prevent some pressure bleed-off oa the i0 ° wedge. The effect

was similar to, but not as marked as_ that reported in reference 20.

The wedges were tested at M I = 21 and 23 only and with t = 0.002 inch.

Figure 18 presents a plot of Zkp/pw against x, the distance from the

leading edge, for the 5° and i0 ° wedges at M I = 21 and R t = 1,360 to

illustrate the type of distributions obtaired. The highest pressure

ratio shown for the I0 ° wedge is probably correct since it is close to

the leading edge where side-edge effects should be negligible. The down-

stream orifices showed bleed-off effects_ however, when the pressures

were plotted against _w-

Although the effect of the boundary isyer is clearly evident in

figure 18, the magnitude of its effect on the pressures is much less

than for the flat plates, and as the wedge angle increases, the measured

pressures approach the pressures predicted by inviscid theory_ as would

be expected. The decreased dependence of _ressure on the boundary layer

as flow deflection angle increases is illustrated more clearly in
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figure 19, which presents the data from figure 18 along with flat-plate

data for the same values of M I and Rt.

Figure 20 presents ZhP/Pw for the 5° wedge plotted against _w.

As for the flat plate, the distribution of the induced static-pressure

ratio is linear in _w and follows the second-order weak-interaction

theory of reference 3 given by

= 0.62 w + 0.152%2 (13)
Pw

only up to _w = 1.5 to 2. The viscous strong-interaction solution is

parallel to the data and constitutes a good prediction when shifted the

proper amount. Whether wedge pressures, like flat-plate pressures, are

strongly dependent on R t could not be determined here since Rt was

not varied by a significant amount. However, the theoretical results

of reference 21 show that Rt has an effect.

Figure 20 also shows that the average slope of Z_p/pw against

is about 0.95, which is of the same magnitude as the values given by

equation (8) for R t = 1,200. (See fig. 15.)

Cones

The 5° and I0° cones were each tested with four different nose

bluntnesses. The data are presented in figures 21 and 22 as Z_p/pc

against x/d. The results are compared with the theory of reference 25.

This theory assumes a sharp cone (Rd _ 0); therefore it is not surprising

that the deviation of experimental results from theory increases with

increasing Rd. In general, theory and experiment agree fairly well for

low R d and high x/d, where the effect of the nose bluntness would be

expected to be small. The reason for the large deviation of experiment

from theory at M I = 21 and Rd = 2,450 and at M 1 = 23 and R d = 3,140

for the 5° cone is not known. The overexpansion shown near the nose is

similar to that reported in references 26 and 27. In the same manner as

for the wedges, the inviscid prediction becomes better as the cone angle

increases.
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CONCLUSIONS

An aerodynamic investigation of flat plates, 5° and lO ° wedges, and

5° and l0° cones in helium flow at Mach numbers from 16.5 to 25.9 indi-

cates the following conclusions:

i. The induced pressure distribution on all the flat plates tested,

covering a range of leading-edge Reynolds number Rt of 584 to 19,500,

varied linearly with the hypersonic viscous interaction parameter _l

despite the fact that a linear variation is theoretically predicted only

for the pure viscous (Rt = O) case in the strong-interaction region.

2. There are two distinct flow regimes whose character depends upon

R t. For R t _ 6,000 the flow is controlled by both viscous and inviscid

phenomena and in this range a linear addition of viscous and inviscid

theories constitutes a good first approximation to the experimental

results. For 6,000 _ Rt _ 20,000 the flow is primarily inviscid in

nature, and in this region inviscid blast-wave theory alone gives a good

approximation to the results. Transition from one regime to the other

is rapid.

3. The rate at which the experimental induced flat-plate pressures

varied with i1 was found to be a linear function of R t. The function

of R t is different in the two regimes, however. When R t < 6,000 the

rate is about 2.5 times that for Rt > 6,000.

4. The results for the 5° wedge indicate that even in the weak vis-

cous interaction region, the induced pressure variation is linear with

_w and is predicted by the second-order _eak-interaction theory only

over a limited range of _w.

5. The cone induced pressure prediction based on weak interaction

theory is considered good for the sharp cones. As tip bluntness increases,

the theory, which assumes a sharp nose, b(comes less applicable. Although

tip bluntness altered the pressure near tle tip considerably, the effects

did not persist many nose diameters downsJream.

6. The effect of compressive flow de]'lection is to greatly decrease

induced pressure effects of blunt leading edges in both viscous and

inviscid flow. As wedge and cone angles _ncreased the measured pressures

approached the inviscid pressure prediction of two-dimensional or cone
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shock theory. It is only at zero or small positive flow-deflection

angles that induced-pressure effects are large.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February 16, 1959.
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